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Illustration: Protoplanetary Disc  cr. NASA/JPL-Caltech

Protoplanetary Disc

Planets and asteroids formation
(accretion process)

asteroid belt near-Earth asteroids e.g., Ryugu

evolution similar to the planets e.g., Vesta
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● Objective: To understand the evolution of massive protoplanetary discs and 
their role in planetary formation.

● Method: Utilizing Smoothed Particle Hydrodynamics (SPH) simulations with an 
approximate radiative cooling prescription.

● Simulation Details
○ SPH Code: Gadget-3 (an updated version of the code by Springel, 2005).
○ Particle Representation:

- Gas and dust components
- Adaptive SPH smoothing lengths
- Two-fluid approach for dust

Modeling Protoplanetary Disc Evolution | Khizar Rustam | SS2023

1. Modeling Protoplanetary Disc Evolution
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Analysis and Visualization
● Simulated Evolution 

○ Monitoring temperature, density, and mass distribution
○ Assessing radiative cooling effects

● Output Visualization: Plots and animations to illustrate disc evolution and 
potential planet formation regions

Conclusion
● Significance: Understanding protoplanetary disc evolution aids in 

comprehending planet formation.
● Future Work: Further refinements and exploration of complex processes.

Modeling Protoplanetary Disc Evolution | Khizar Rustam | SS2023

1. Modeling Protoplanetary Disc Evolution
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● Asteroids Belt

The Size-Frequency Distribution of Asteroids | Jiaying Gong | SS2023

2. The Size-Frequency Distribution of Asteroids
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cr. ESA/Hubble, M. Kornmesser
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● Methods
○ CoEM - Collisional Evolution Model

● Results
○ the initial main belt size distribution after accretion
○ the asteroid disruption scaling law

● Outlooks
○ compare calculated values with observations
○ apply up-to-date data to repeat the model

The Size-Frequency Distribution of Asteroids | Jiaying Gong | SS2023
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2. The Size-Frequency Distribution of Asteroids
(Bottke,2005)
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● Methods
○ Magnetic Field calculation by Formisano incorporating thermal convection, 

without any approximations.
○ Magnetic Field calculation by Weiss, using Archimedean and Coriolis 

forces with approximations.
● Results

○ Both methods were tested on the Vesta’s time evolution file.
○ Even with the set of approximations, the presence of early stage dynamo 

presence was validated.

Magnetic Field of Asteroid Vesta | Hari Bharath Chitta | SS2023

3. The Magnetic Field of Asteroid Vesta
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● Outlooks
○ The validation could be done in

depth considering the real core
radius from the metal fraction in
the core.

3. The Magnetic Field of Asteroid Vesta
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Magnetic Field of Asteroid Vesta | Hari Bharath Chitta | SS2023



Dezentrales Logo
optional

● Ryugu’s parent body
○ cracks in Ryugu samples (by JAXA mission Hayabusa)

● Methods
○ Numerical modelling using Finite differences

Thermal pressurization of pore water | Yertay Yeskaliyev | SS2023

4. Thermal Pressurization of Pore Water
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● Results
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● Results
○ The pore expansion is mostly contributed by aspect ratio of the pores
○ Expansion of pores start by big aspect ratio pores, due to higher sensitivity to 

pressure variations

● Outlooks
○ Behavior of pores are unstable in high fluid pressure, the reasoning is yet 

unknown and must be further investigated
○ As pore size drastically affects the thermal pressurization, aspect ratio of pores 

needs to be grouped or discretized for more accurate modelling of pore expansion

Thermal pressurization of pore water | Yertay Yeskaliyev | SS2023

4. Thermal Pressurization of Pore Water
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● An Icy satellite of Saturn
● Was studied by Cassini in 2005
● A dense cloud of water vapor and ice grains was ejecting from a region in the 

South pole called “Tiger-stripes” region
● It shows that Enceladus is active
● Tidal forces from Saturn and neighboring moons
● Highly probable to have a subsurface ocean
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Part II - A Journey to Enceladus
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Colorado university
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● MOI : shows the mass distribution inside a body
● MOI Coefficient = [0.33, 0.34] (Iess et al. (2014)))

MOI of Enceladus | Delaram Deravasi | SS2023

5. Moment Of Inertia (MOI) of Enceladus
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(W. Neumann et al. (2019))
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Red dash-line : MOI Coefficient that Iess proposed
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5. MOI of Enceladus
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(W. Neumann et al. (2019))
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6. Hydration Swelling & Dehydration Shrinking of rock Minerals
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● Hydration occurs in the cracked areas to a degree 
that depends on temperature

● Hydration or dehydration leads to changes in the 
volume of the rock

● This change in volume relates to the crack width 
variations

● Cracks may open or close due to hydration 
swelling or dehydration shrinking
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Mineral Dissolution and Precipitation | Maria Paula Bustos Moreno | SS2023

7. Mineral Dissolution and Precipitation in the Ocean layer
of Enceladus
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● Open cracks provide circulation of chemical fluids
● Dissolution erodes conduit walls - widens cracks
● Precipitation narrows or clogs cracks

● Chemical found - CO2, NaCl, NaHCO3

● Definition of the chemical reaction and equilibrium 
constant 

● Calculate Precipitation and Dissolution rates
● Calculate the change in the crack width

(Perera. (2021))
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● Existing models applied for different objects
○ Models for Ceres work for Ryugu, Enceladus

● Model improvement
○ Update with new data
○ Simplified models can be more complex
○ Comparison with other models / methods

● Outlooks - research is ongoing
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Summary & Conclusion
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Thank you for your attention!

Questions?
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