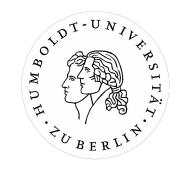
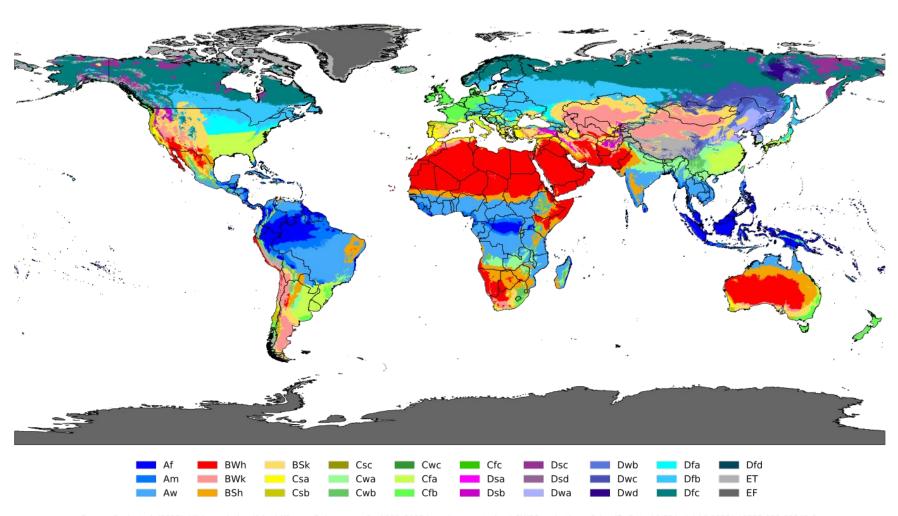


Interannual and Intraannual Regional Variability in Forest Phenology and Its Influence on Boreal Permafrost Thermal and Hydrological Dynamics

Where has the Far North's Future Already Happened?

Thomas Hoffmann, Maham Siddique, Elene Tskitishvili

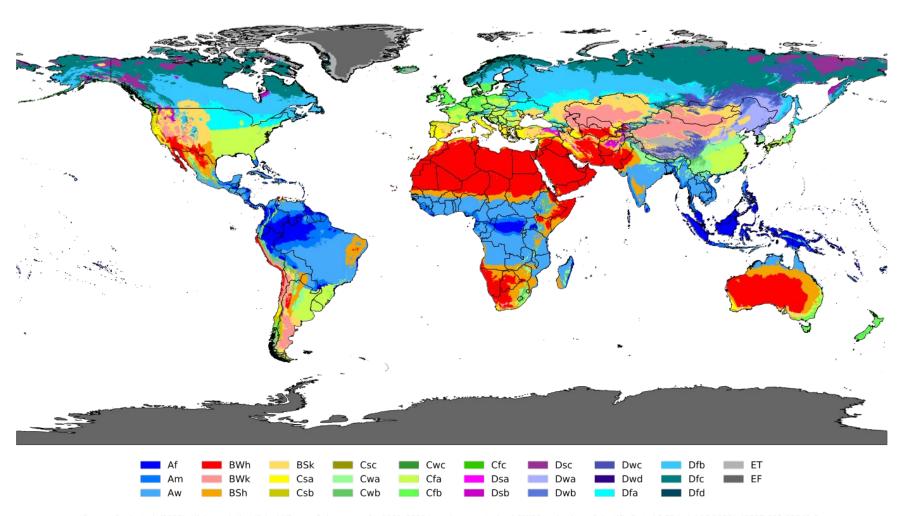

Berlin University Alliance


Introduction

Climate Change Fundamentals

- Shared Socioeconomic Pathways (SSPs): climate change scenario projections by Intergovernmental Panel on Climate Change (IPCC) (IPCC, 2021)
- SSP2-4.5 (intermediate GHG emissions: CO₂ emissions around current levels until 2050, then falling but not reaching net zero by 2100) most likely (HAUSFATHER & PETERS, 2020)
- likely warming by 2100: 2.1 3.5 K (IPCC, 2021)
- climate zones shift polewards in response (BECK et al., 2018)
- polar amplification: warming more pronounced in polar regions as compared to the global average (LEE, 2014)

Köppen-Geiger climate classification map (1991-2020)



Source: Beck et al. (2023): High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections, Scientific Data 10:724, doi:10.1038/s41597-023-02549-6.

02.10.25

Köppen-Geiger climate classification map (2071-2099 SSP245)

Source: Beck et al. (2023): High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections, Scientific Data 10:724, doi:10.1038/s41597-023-02549-6.

02.10.25

Introduction

Concept

- records of past and models of future climate data are available worldwide
- if climate zones shift towards the poles, records should show climatic changes in the south* of a study region analogous to shifts predicted to occur in the future further north*
- enables extrapolation of related changes, space for time substitution

"Over the next n years, this area in the north* is expected to experience the following climatic changes.

Over the past n years, this area in the south* has already experienced analogous changes.

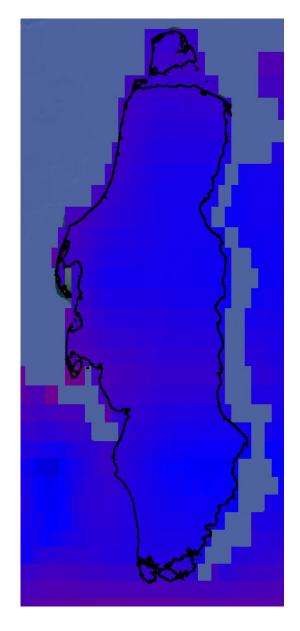
Therefore, if we want to see what the northern* area will look like in the future, we should look at what the southern* area looks like now, and how it has changed."

*relative to the northern hemisphere

Introduction

Research Objectives

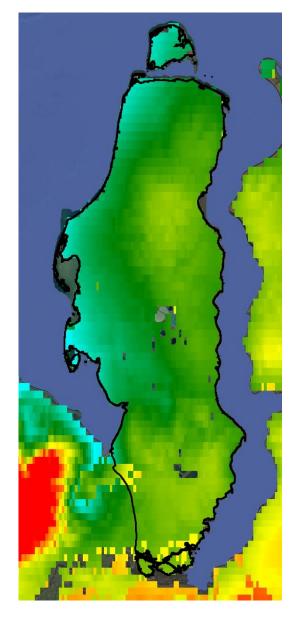
- How well are predicted climatic changes for the future of the north of a study area in the northern hemisphere reflected in the past changes of the south of the same study area?
- Assuming such areas of correspondence exist, how well can they be used to extract related bioclimatic data to further extrapolate the future of the north of the study area?



© Landsat/Copernicus, IBCAO, via Google Earth Pro

Study Site Selection

- requirements:
 - north-south gradient
 - relatively even terrain
 - continuous permafrost
- choice:
 - Yamal Peninsula (northern Siberia)
 - ~700km north-south extent



OF TOTOUNIANT AND THE STITA!

Data

- climate projections for SSP2-4.5
 - NASA Earth Exchange Global Daily Downscaled Climate Projections
 - based on Coupled Model Intercomparison Project Phase 6 (CMIP6)
 (EYRING et al., 2016)
 - January 1950 December 2100
 - humidity, precipitation, radiation (short- and long wave), wind speed,
 air temperature metrics
 - used for classification of past, present, and future climatic conditions, as well as change detection

02.10.25

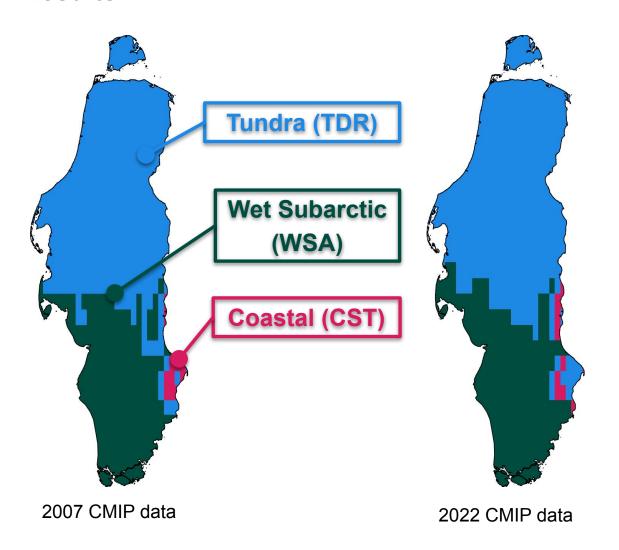
Data

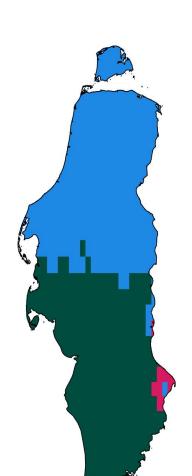
- extrapolation of snow characteristics
 - NASA Famine Early Warning Systems Network Land Data
 Assimilation System (FLDAS)
 - January 1982 ongoing (used until March 2025)
 - snow cover fraction (SCF), snow depth (SD),snow water equivalent (SWE)
 - used to calculate historical changes in snow characteristics

02.10.25

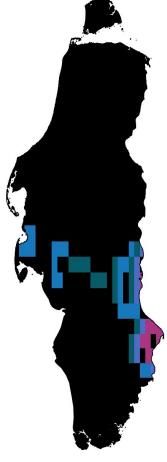
Data

- extrapolation of biomass
 - ESA Biomass Climate Change Initiative (CCI)
 - 2007, 2010, yearly 2015 2022
 - → bottleneck on research time frame
 - above-ground biomass [t/ha]
 - used to calculate historical changes in biomass

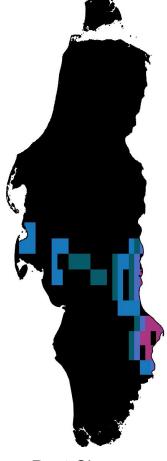




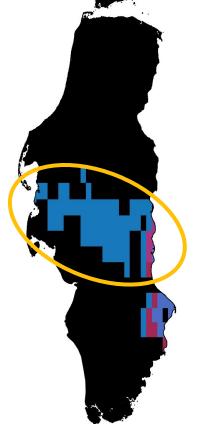
Processing


- local climatic classification via k-means clustering for 2007 ("past"), 2022 ("present"), and
 2037 ("future") CMIP data
 - hyperparameter tuning → three classes in all cases
- class assignment is pseudorandom → correspondence defined on best-fit basis
- calculation of unified set of average cluster centroids to ensure intercomparability
- classification of all time steps using unified centroids
- calculation of 2007 2022, 2022 2037 climatic classification change maps
- calculation of 2007 2022 changes in snow characteristics and biomass
- extraction of associated historical changes in snow characteristics and biomass per class change type



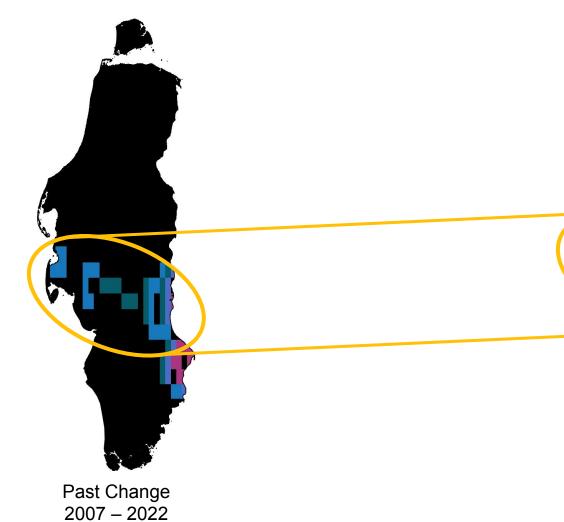


Past Change 2007 – 2022



Future Change 2022 – 2037

Past Change 2007 – 2022



Future Change 2022 – 2037

Predicted changes for the future...

...have historical precedents further south.

Predicted changes for the future...

Future Change 2022 – 2037

Results no class change TDR -> WSA WSA -> TDR CST -> WSA TDR -> CST Past Change Future Change corresponding unique unprecedented 2007 - 20222022 - 2037change change change

ON TOT-UNIVERSITÄ,

Results

Class Change	Snow Cover Fraction [%pt]	Snow Depth [cm]	Snow Water Equivalent [kgm ⁻²]	Biomass [t/ha]
no class change	-2.5	-11.5	-31.174	-0.046
TDR -> WSA	+1.9	-4.4	-27.452	-0.007
TDR -> CST	+1.2	-1.7	-28.239	-0.049
WSA -> TDR	+2.4	-1.6	-25.657	-0.002
CST -> TDR	+0.9	-2.9	-29.980	-0.105
CST -> WSA	unknown	unknown	unknown	unknown

Discussion

- identified spatiotemporal patterns match expectations
 - change patterns as expected from bands of similar climatic conditions moving polewards
 → successful proof of concept
- clusters ~ Köppen climate zones → cluster boundaries as hotspots of change
 - CST cluster linked to settlements (Yaptik-Sale, Novy Port), correlation or causation?
- TDR → WSA class change dominates, expected to occur on wider scale in the future
 - absence of WSA → TDR in future predictions suggests further destabilisation of conditions
- class changes associated with CST are highly volatile, unlikely to reflect actual conditions
 - local anthropogenic influence and/or simulation artefacts

Discussion

- snow characteristics
 - generally declining, conforming with predictions of warming climates & Polar Amplification
 - surprising disconnect between snow cover fraction and snow depth
- unexpected generally prevalent decrease in biomass
 - Reasons? Sparse input data? Seed availability?
- inter-class trends persist within classes, too (as seen in "no class change" trends)
- some predicted changes in local climate lack historical precedent → uncharted waters

Outlook

- data compatibility considerations → how comparable are CMIP and FLDAS data?
 - preliminary results: general but inhomogeneous correlation between related variables
- cluster similarity → do clusters in snow characteristics overlap spatially with CMIP clusters?
 - preliminary results: generally similar, but FLDAS even more of a N-S gradient,
 no significant cluster of coastal outliers in the SE (CMIP CST class)
- modelling →can future snow characteristics and biomass be predicted based on CMIP predictions
 - preliminary results: Q-Q plots imply significant inaccuracies, models failing to capture dynamics; potentially due to input data incompleteness, coarseness;
 varying performance with regards to training data subset and

response variable

ON TOT-UNIVERSITA'S.

Outlook

- extraction / extrapolation of other data
 - soil characteristics
 - other biomass proxies, e.g. vegetation indices, as satellite observations permit
- inclusion of further input data next to CMIP
 - e.g. topography, etc.
- variation the time frame
- application to different study areas
 - risk of inaccuracy if inhomogeneous conditions prevent "smooth" polewards shift
 - no guarantee of temporally consistent classes resulting from k-means clustering
- in-situ verification of clusters / change dynamics

Sources

Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A., Wood, E.F. (2018): Present and future Köppen-Geiger climate classification maps at 1-km resolution. *Scientific Data*, *5*, 180214. DOI: 10.1038/sdata.2018.214

Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E. (2016): Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. *Geoscientific Model Development*, 9 (5), 1937-1958. DOI: 10.5194/gmd-9-1937-2016

Hausfather, Z., Peters, G.P. (2020): Emissions – the 'business as usual' story is misleading. *Nature*, *577*, 618-620. DOI: 10.1038/d41586-020-00177-3

IPCC (2021): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2391 pp. DOI: 10.1017/9781009157896

Lee, S. (2014): A theory for polar amplification from a general circulation perspective. *Asia-Pacific Journal of Atmospheric Sciences*, *50*, 31-43. DOI: 10.1007/s13143-014-0024-7

22

Thank You for Your Attention!

Data download via QR code

Correspondence: hofmatho@hu-berlin.de

Berlin University Alliance

Senatsverwaltung für Wissenschaft, Gesundheit und Pflege

